Dissection of Splicing Regulation at an Endogenous Locus by Zinc-Finger Nuclease-Mediated Gene Editing
نویسندگان
چکیده
Sequences governing RNA splicing are difficult to study in situ due to the great difficulty of traditional targeted mutagenesis. Zinc-finger nuclease (ZFN) technology allows for the rapid and efficient introduction of site-specific mutations into mammalian chromosomes. Using a ZFN pair along with a donor plasmid to manipulate the outcomes of DNA repair, we introduced several discrete, targeted mutations into the fourth intron of the endogenous BAX gene in Chinese hamster ovary cells. Putative lariat branch points, the polypyrimidine tract, and the splice acceptor site were targeted. We recovered numerous otherwise isogenic clones carrying the intended mutations and analyzed the effect of each on BAX pre-mRNA splicing. Mutation of one of three possible branch points, the polypyrimidine tract, and the splice acceptor site all caused exclusion of exon five from BAX mRNA. Interestingly, these exon-skipping mutations allowed usage of cryptic splice acceptor sites within intron four. These data demonstrate that ZFN-mediated gene editing is a highly effective tool for dissection of pre-mRNA splicing regulatory sequences in their endogenous context.
منابع مشابه
Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows
Zinc-finger nickases (ZFNickases) are a type of programmable nuclease that can be engineered from zinc-finger nucleases to induce site-specific single-strand breaks or nicks in genomic DNA, which result in homology-directed repair. Although zinc-finger nuclease-mediated gene disruption has been demonstrated in pigs and cattle, they have not been used to target gene addition into an endogenous g...
متن کاملIn vivo genome editing of the albumin locus as a platform for protein replacement therapy.
Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approach...
متن کاملDesign and Development of Artificial Zinc Finger Transcription Factors and Zinc Finger Nucleases to the hTERT Locus
The ability to direct human telomerase reverse transcriptase (hTERT) expression through either genetic control or tunable regulatory factors would advance not only our understanding of the transcriptional regulation of this gene, but also potentially produce new strategies for addressing telomerase-associated disease. In this work, we describe the engineering of artificial zinc finger transcrip...
متن کاملQuantitative assay for TALEN activity at endogenous genomic loci
Artificially designed nucleases such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) can induce a targeted DNA double-strand break at the specific target genomic locus, leading to the frameshift-mediated gene disruption. However, the assays for their activity on the endogenous genomic loci remain limited. Herein, we describe a versatile modified lacZ...
متن کاملHighly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery
The adoptive transfer of engineered T cells for the treatment of cancer, autoimmunity, and infectious disease is a rapidly growing field that has shown great promise in recent clinical trials. Nuclease-driven genome editing provides a method in which to precisely target genetic changes to further enhance T cell function in vivo. We describe the development of a highly efficient method to genome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011